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Abstract N-loop solitons are consmcted by means of N-cusp soliton solutions of the Harry 
Dym equation. The proposed approach is based on a novel link between the ‘loop soliton 
equation’ and the amplex H a q  Dym equation considered on a special curve. 

1. Introduction 

This paper deals with constructing the multisoliton solutions of the nonlinear evolution 
equation 

where y = y(5, t ) ,  5 and t E R, y --f 0 as 6 + 2~00 and s denotes the arc length measured 
at any fixed f along the plot of the function y = y ( 5 ,  t) up to the point under consideration. 

From the physical point of view the nonlinear system (I)  arises [I] as the generalization 
of the equation which describes the nonlinear transverse oscillation of elastic beams under 
tension. This equation has the form 

and can be obtained [Z] by a reduction of the rigorous equation of motion of  a uniform 
elastic beam under tension derived in [3]. The latter reads as follows: 

(3) 

where X and U are the coordinates of the plane in which the beam is situated, T is the 
time variable, h = (p /pA)”’  is the linear wave velocity, p is the density of the material, 
A denotes the area of cross section, and E and I are Young’s modulus and the moment of 
inertia, respectively. Finally, p is the tension parallel to the axis of X and is assumed to 
be constant. 

Equation (3) can be reduced to equation ( 2 )  under the change of variables 5 = 
A-II2(X + AT), y = A-’Izu ,  t ,= E A - ’ / ’ U  by keeping up to the first order of the 
dimensionless parameter E = E I / ( 2 p A ) .  It measures the relative size of the bending 
stiffness under tension along the beam and is assumed to be small. It should be noted that 

0305-4470/94/248197+09$19SO @ 1994 IOP Publishing Ltd 8197 



8198 L A Dmirrieva 

the nonlinear term of equation (3) (and consequently of equation (2)) is due to the bending 
moment. which is proportional to the curvature of the beam K = ux,y(l + u: )~ / ' .  

Now instead of a beam under tension let us consider a flexible elastic stretched rope on 
which the deformation takes the shape of a loop. One can describe this situation just as in 
the case of small deformations of the rigid beam, but now it  is necessary to distinguish the 
branches of the deformation of the stretched rope with different signs of curvature. With 
this aim the expression of the curvature has to be modified in the following way [l]: 

where dO is an increment of the tangential angle 0 at a point of the stretched rope, and ds is 
an increment of the arc length. The factor sgn(dX/ds) is regarded as an index to define the 
branches of deformation having opposite sign to that of the curvature. The consequence of 
the above definition of curvature is the appearance of this sign factor in the nonlinear ,term 
of equation (3). Now applying to equation (3). modified as above, the same transformations 
and assumptions which reduced equation (3) to equation (Z), one easily obtains equation (2) 
with the factor sgn(de/ds) in the nonlinear term, i.e. equation (1). Thus the latter describes 
a wave propagating along a stretched rope when the parameter measuring the relative size 
of the bending stiffness under tension along the rope is considered to be small. 

Equation (l) ,  as well as equation (2), both belong to a class of integrable nonlinear 
equations found by Wadati, Konno and Ichikawa [4] (hereafter referred to as WKI equations). 
Among W K I  equations one can also mention the Hany Dym equation IS] and the nonlinear 
Schrddinger-type equation [6]. 

The distinctive feature of WKI equations is that the associated linear problem differs 
from the ZakharovShabat spectral problem that generates the 'usual' AWS equations 171. 
The crucial point of the wKI spectral problem is the dependence of the wavefunction's 
asymptotics (as the spectral parameter tends to infinity) on the coefficients of the system. 
As a consequence, all known solutions of the WKI equations are intrinsically implicit. This 
means that they depend on space and time variables through some phase function, the latter 
being defined implicitly by afunctional equation [1,6.8-11]. That is why, in spite of the 
fact that each WKI equation may be l iked by a sequence of transformations [ 12,131 with 
an AKNS equation, WKI equations possess many unusual features, and indeed form a new 
class of integrable equations deserving special study. 

The one-soliton and two-soliton solutions of equation (1) were found by the inverse 
scattering transform (IST) in [ 1,9]. They turned out to have the shape of loops and be 
described as follows: 

YQ, 0 = ut + E-(:> 0 7  0 

E-(:, t )  = E-(:  +&-(e. t ) ,  1 ) .  

(4) 

where the function E-(:, t )  is defined implicitly by the functional equation 

(5) 
Here Y and E- are some functions discussed below. 

The one-loop soliton solution of equation (1) was also obtained in [I41 due lo the 
established transformation with the modified Korteweg-de Vries (mKdV) equation. This 
transformation was applied for the case of N-loop solitons in [13]. However, it gave 
only a parametric representation for such solutions. N q e l y ,  the functions Y and E- in 
equations (4), (5) were written down as integrals of some known functions. These integrals 
can only easily be calculated analytically in the one-soliton case. Even for N = 2 one 
meets serious analytical difficulties, to say nothing of those arising for arbitrary N. 
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An attempt to find the functions Y and E- explicitly when N 2 3 by the IST fails due 
to even greater analytical difficulties. 

In the present paper we propose a method which allows us to find the above functions 
explicitly for arbitrary N .  Thus we construct by nature implicit N-loop soliton solutions of 
equation (1) (it will hereafter be called the 'loop soliton equation' (LSE)) in 'almost explicit' 
form. For N = 1,2 the results obtained coincide with the known ones [1,9,14]. 

Our approach is based on a link which we establish between the LSE and the complex 
Harry Dym equation (CHDE) 

it + ?3iZLL = 0 i = i ( z ,  t )  E cc (6) 
where the complex variable z = f + iy(f, t )  at any fixed I E I[$ changes along the plot 
of the LSE solution y(6, t )  in the plane (6. y). The 2N-parametric complex solutions of 
equation (6) are obtained by a simple procedure from the N-cusp soliton solutions of the 
'real' HDE. The latter have recently k e n  constructed in [IO] by the 'higher times approach'. 
Finally, the N-loop soliton solutions of the LSE are derived by means of the above-mentioned 
W-parametric solutions of the &DE. 

2. N-loop soliton solutions 

The loop soliton equation ( I )  is known [14] to be linked with the mKdV equation in potential 
form 

O, + 10: + o,,, = o o = ~ ( x ,  5 )  (7) 
considered under the boundary conditions 0 --f 2a as x + +CO and 0 --t 0 as x -+ -CO. 
This link is based on the change of variables 

x = e +&-(e, t )  5 = t (8) 
where the phase function ~ ( f ,  t) is defined implicitly in terms of the mKdV solution 0 by 
the functional equation 

X 
~ - ( { , t ) =  E - ( x , T ) =  (1-cosO)dx'. (9) L 

L 
The solution y ( f ,  t) of equation (1) is then given as follows: 

X 

y ( 6 ,  t )  = Y ( x .  r) = sin OdX'. . (10) 

Equations (9),(10) yield a parametric representation for an LSE solution in terms of 
some solution of the mKdV (7). In [13] it was shown that the mKdV N-soliton solution 171 
generates the N-loop soliton solution of the LSE in such a way. The first of them can be 
written in the form 

(11) 
@U O(X.  r )  = 4 tan-] - 
0 8  

where 



8200 LA Dmirrieva 

Here E' denotes the summation over the vectors mu or mg E ZN whose components 
are equal only to 0 or I .  The number s of components equal to I is odd for the 
vector m,: s = 2k + I ,  k = 0. 1 , .  . . , [y]. For the vector mg this number is even: 
s = 2k, k = 0, I , .  . . , [$I. The vector q ~ ( x ,  T )  = (vi, .  . . , q ~ )  is given by 

(14) 3 
v k  = pkx - p k 5  - i$ k = 1, ..., N 

with P k  ( P I  # pj  as l # j )  and q i  being arbitrary real constants. By ( .  , . ) we denote 
the standard inner product ( q ,  m)  = E,"=, qkmk. The symmetric N x N matrix B has the 
entries 

Bkr =o .  Pk - PI BW =21n - 
IPk+PIl  

One can express cos Q and sin 0 in (9), ( IO) in terms of 0" and 0g and thus obtain 
the parametric representation for the N-loop soliton solution given in [13]. However, due 
to the complicated dependence of 0" and 0, on x an explicit calculation of integrals on 
the right-hand side of (9), (10) for arbitrary N is an intractable analytical problem. 

To avoid this problem, we now show how to find the functions E-(x, 5 )  and Y ( x ,  T )  

in (9),(10) explicitly by using our previous results [IO] on the N-cusp soliton solutions of 
the Harry Dym equation (HDE) 

(16) r , + r r , , , = O  3 r = r ( x , t )  x , t ~ W .  

These solutions being intrinsically implicit are described on 'almost explicit' level in 
the form 

r ( x , f )  = R ( x .  5 )  

where 

X = x + & ( X , t )  f = l .  

E ( X ,  t )  = E ( X .  5 ) .  

with 

The functions R and E are given explicitly by expressions 

and are related as follows: 

In equations (17), (18) E' denotes, as earlier, the summation over the vector m E ZN, 
whose components are equal to 0 or I .  The vector q = q ( x ,  T )  = ( V I , .  . . 7 ~ )  is given 
by (14), the matrix E is defined as in (15) and the components of the vector E R" read 

P k  = PF' , (20) 
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Now we return to equations (8)-(10). They can be written in the form 

r E , t ) =  Y ( x , r ) - - I m E ( x , r )  (21) 

x = ( + ~ - ( ( , r )  ~ = f  

E - ( ( ,  t )  = E - ( x ,  r )  = R e  E ( x ,  r )  

&x, T )  =[-[I - &x', r ) ldx '  

A 

(22) 
where 

(23) 

with 

& x .  T )  = exp[iO(X, r ) ~ .  (24) 
Since k(x ,  T )  and, consequently, b(x, r )  depends on x and T by means of the vector 

q (14), it is natural to set 

We introduce analogous designations for the functions R ( x .  5 )  and k(x, T )  given by (17), 
(18). The links between the functions E and R ,  as well as 2 and E ,  are stated by the 
following lemma. 

Lemma 

f f ( X , T ) - k ( V l , . . . , V N )  ~ ( X , ~ ) - ~ ( V I . . . . P V N ) .  

Proof: Due to equations (24) and ( 1 1 )  the function l? can be written as 

4, - i 4 ,  

Then we rewrite the function R given by (17) in the form 

where 

Here all the designations are the same as in (12), (13). Comparing the latter with expressions 
for f . (p , (x ,  7 )  E jU<,,(ql, .  . . , T J N )  one can see that 
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The last relations with equations (27), (28) give the link (25). Equation (26) now follows 
0 

the above-proved lemma allows 

from it due to transformations (!9) and (23). 

With the use of the explicit representation (18) for 
us to obtain the following representation for the function k:  

'Y, - i'Y" 
ag - iQU 

k = 4  

where the functions are given by (12). (13), and the functions read as 

W x ,  r )  = E' (-U(s-')/2exp (f(Bm,.  mu) + In(B. mu) + (7, mu)) (30) 

QI?,(x. r )  = E' (-1)S/Zex~(~(Bmg,m8)  + W A m d  + ( % m g ) ) .  (31) 

In"E7.N 

m.EZN 

Here again we use designations similar to those in equations (12),(13). The vector 
given by (20). 

on 'almost explicit' level. We formulate the main result of the present paper as follows. 

Theorem I. The N-loop soliton solutions of the LSE (1) have the form 

is 

Inserting the last equations into (29), (21), (22) we obtain the N-loop soliton solution 

where 

with 

Here 
equations (14), (15),(20). 

and are given by equations (12),(13),(30),(31) through the use of 

3. A link with the complex Harry Dym equation 

In this section we show a link between the LSE (I), mKdV equation (7) and cHDE (6) 
considered on a special curve. This link clarifies the intrinsic nature of the consbuctions 
given in section 2. 

Suppose that O(x.  r )  is a solution of the mKdv equation (7) with boundary conditions 
0 + ~ Y Z  as x + +CO, 0 + 0 as x + -CO. The LSE solution y , ( e , t )  (y + 0 as e + &CO) is linked with 0 by the Ishimori transformation (8)-(10). We also introduce the 
complex function 

i ( z ,  r) = &x, r )  exp[iO(x, r)] (35) 
where z E @. with 

z = -k(x,  5 )  + x = [k(x', 5 )  - 1]dx' + x r = 5 .  (36) 
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Theorem 2. The function F(z, t )  satisfies the cHDE (6) considered in the complex plane 
z = 5 + iy on the above-mentioned LSE solution y(5, f )  plot against e .  
Proof: To prove this statement we use the known links [12, 151 between the 'real' HDE (16) 
and the mKdV in the form 

(37) 1 3  
Vr - zvx -t v x x x  = 0 .  

These links are 

r ( x , f ) = R ( x . r )  =exprp(x,r) (38) 
X 

x = [,IR(x', 7) - I l d x ' f x  t = 7 .  

On using (38), equation (37) yields 

(39) 

R z + ~ R ~ R - Z - 3 R x X R x R - ' + R x x x  = O .  (40) 

The latter equation under the change of variables (39) transforms into the HDE rl+r3rxXx = 0. 
Now one can easily check that if the function Q(x, r )  solves the mKdV equation (7) the 

function 6 defined by (35) satisfies the same equation (40) as does R. Since the reciprocal 
transformations (36) and (39) are similar, the function F(z, t )  satisfies the cHDE (6). 

To show now that at any fixed t the variable z = 5 + iy changes along the LSE solution 
y(5, t )  plot we make use of equations @)-(lo) which define this solution. They can be 
written as 

Comparing the last equations with (36). (35) one can see that 

z = 5 + iy(5, t )  . 
Thus, theorem 2 is proved. U 

Remark. From equations (8x10) it follows that yc = tan 0. Thus the real and imaginary 
parts of the CHDE solution i = cos 0 + i sin 0 at any 5 form components of the tangent 
vector to the plot of y(5 ,  t )  (t is fixed) against 6. 

In section 2 the mKdV solution Q was chosen as the N-soliton solution (11)-(13). In 
this case the functions 6 and which completely define the above-discussed cHDE solution 
i (see (35),(36)) are given explicitly by (27) and (29). respectively. This 2N-parametric 
complex solution was obtained from the known ClOI N-cusp soliton solution of the HDE by 
means of the transformations (U). (26). Finally, the LSE N-loop soliton solution itself was 
conshucted due to the links (21), (22). 

4. Particular cases of the N-loop solitons: N = 1, 2,3  

For N = 1, equations (l2),(l3),(30),(31) yield 

Ou = exp V I  +8 = 1 

= p;I expqi *, = 0. 
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Then equations (32),(34) take the form 
y(5, t) = 2p;' sech VI 

~ ( 6 ,  f) = 2p;' exp ql sech 71 

where 

7Ik = pk(t +&-(e, E)) - P,'t - 7: k = 1 . (42) 
The function E -  satisfies the boundary conditions: E- -+ Oas 5 --f -CO and E-  -f 4p;' 

as 6 -+ +CO. 

We note that in [ 1.141 concerning the one-loop soliton another phase function &+(t, t) 
was used. It was introduced under the boundary conditions E+ -+ 0 as 5 --+ +CO and is 
related to our phase function as follows: 

4 
= E -  - pl' 

Hence 
2 
PI 

E + @ ,  t )  = -(tanhqi - 1). (43) 

Equations (41), (43) coincide with the known LSE one-loop soliton solution. 
For N = 2 one has 

% = exp 711 + exp 712 

Og = 1 - Y ~ Z  exp(rlt + rld 
(44) 

(45) 

(46) = p;' exp 711 + P;] exp 712 

v8 = -YIZ(P;] + ~;])exp(m + 112) 

where qa(k = 1,2) is given by (42) to be 
(47) 

An insertion of the functions (44)-(47) into (32), (34) leads to the known results 191 on 
2-loop soliton solutions (to obtain a complete correspondence one has to take into account 
the substitution t cf -t, E+ cf -E+, where E+ = E- - 4(p; + p;'), which is to be 
implied in comparison with [9]). 

I 

Finally, for N = 3, equations (12), (13),(30),(31) take the form 

% = exp 711 + e w  v2 + exp v3 - Y I Z Y I ~ Y U  exp(711 + 712 + 713) 

Qg = 1 - Y I Z ~ X P ( V I  + t l z )  - n 3  e x p h  + 713) - YU exp(rl2 + 713) 

W, = p;' expm + P;' expm + p;' exp713 

-YIZYI~YU(P;] + p;' + p;')exp(n + n + v 3 )  

*, = -YIZ(P;' + p;')exp(m + 172) - Y13(P;l + p;') w ( v t  + 713) 

- YU(P;' + P;')exp(w + m) 
where qk(k  = 1,2,3) are given by (42), and the constants y,k(j. k = 1,2,3) have the 
form (48). The above functions, when inserted into cquations (32), (34) describe the 3-lOOp 
soliton solution on an 'almost explicit' level. 
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In conclusion, we notice that the method proposed in the present paper can be generalized 
to the case of periodic boundary conditions for the LSE. The corresponding LSE solutions 
can be obtained by means of the finite-gap solutions of the HDE which have been recently 
constructed in [ I l l .  
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